If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=4z^2+1
We move all terms to the left:
20-(4z^2+1)=0
We get rid of parentheses
-4z^2-1+20=0
We add all the numbers together, and all the variables
-4z^2+19=0
a = -4; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-4)·19
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*-4}=\frac{0-4\sqrt{19}}{-8} =-\frac{4\sqrt{19}}{-8} =-\frac{\sqrt{19}}{-2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*-4}=\frac{0+4\sqrt{19}}{-8} =\frac{4\sqrt{19}}{-8} =\frac{\sqrt{19}}{-2} $
| -97=-6x-3x-7 | | 50q-43=50q-81 | | -0.5x=1.7 | | 13=s+7 | | 46+m1=180 | | -6x+2=2x+98 | | 3x-x=1.16 | | 45+6x+1=4x-6 | | -1+6x=7x-1 | | 2x+4+4+2x-9+x=180 | | 2w^2-15w+13=0 | | X-2=-4x-37 | | 4(2x+1)=6(3x-2) | | x+35=2x+16 | | 9z=0.45 | | 2w^2-15w-13=0 | | 4(5x+1)-3(x+1)=2(x+1)-3(x+1) | | y=8(2)^2 | | 4(x-3)-10x=-40 | | 6-3y=17 | | x÷2-3=10 | | 5(x-12)=15(3=x) | | -3+5+9g=11 | | 5(x-12)=153=x | | -3+5+9g=1 | | 5x-12=15(3=x) | | 117+33+m1=180 | | 7x-22=-1/3(9x-6) | | 5x-12=153=x | | 5(2x+1)=(3x+12)-5 | | 35b-335=751 | | X-20=20+x/2 |